Abstract

The effect of a single electric charge on the efficiency with which ultrafine particles deposit in human airways has been investigated. When inhaled short-lived radon progeny are attached to electrically neutral particles their deposition efficiency is controlled by diffusion. But most ambient particles carry one, or a few, charges. We measured and compared the deposition (DE) of singly charged, charge-neutralized, and zero-charge 20-nm and 125-nm particles in hollow-cast models of human airways. These particle sizes were selected because they are about where modal peaks occur for the activity of the short-lived radon progeny in indoor air. For singly charged 20-nm particles deposition (+/- standard error) in the casts was 3.4 +/- 0.3 times that for charge neutralized aerosols and 5.3 +/- 0.3 times the amount deposited for zero-charged particles. Corresponding ratios for the 125-nm particles were 2.3 +/- 0.3 and 6.2 +/- 0.7. Since most ambient particles are charged this effect must be considered when models are used to predict dose from inhaled ultrafine particles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call