Abstract

The microwave-plasma-enhanced CVD of carbon nanostructures at atmospheric pressure allows shorter deposition times and reduces the complexity of the experimental set-up. In our study, the substrate temperature was varied in a wide range (300 – 700 C) using microwave plasma heating, as well as an additional heater. The distance between the substrate and the plasma flame was also varied in order to establish the conditions for an efficient deposition process, the latter being carried out at specific argon/hydrogen/methane gas mixtures. Optical measurements of the plasma flame spectrum were conducted to obtain the gas temperature and the plasma density and to analyze the existence of reactive species. The carbon nanostructures deposited on the metal samples were investigated by SEM. The relation between the morphology and the gas-discharge conditions is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.