Abstract

Aluminum oxide-doped zinc oxide (ZnO:Al2O3) transparent thin films were deposited by DC magnetron sputtering on glass substrates; film thickness can be correlated with deposition time. The effect of ZnO:Al2O3 film thickness on electrical properties, ultraviolet (UV) transmission, surface morphology and structure, solvent resistance, and scratch hardness was investigated. The surface roughness and crystallite size of deposited films increased from 0.75 to 2.22nm and from 14 to 57nm, respectively, as the film thickness was increased from 18 to 112nm. In contrast, the percent UV transmission (% T) of ZnO:Al2O3 deposited glass plates at a wavelength of 365nm increased when the film thickness was decreased. The electrical properties of nano-film deposited glass plates such as electrical resistance, tribo-charge voltage, and decay time were in the range of electrostatic discharge (ESD) specifications. The ZnO:Al2O3 nano-film deposited glass substrate possessed good acetone and iso-propanol resistance as well as high scratch hardness. This work opens up the possibility of using the ZnO:Al2O3 transparent ultra-thin film on glass substrate in ESD applications based on their excellent properties in terms of the relatively thin and adjustable ZnO:Al2O3 film thickness needed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.