Abstract

This paper demonstrates a numerical simulation study to understand particle deposition phenomena in wavy pipe configurations comprehensively. The research investigates the intricate dynamics of particle deposition within wavy pipes by utilizing the RNG k-ε turbulence model with enhanced wall treatment for fluid flow simulation and employing a Lagrangian particle tracking model. The finite volume approach is adopted to solve the mathematical model of the current problem. The rate of aerosol particle deposition within a wavy pipe under turbulent flow conditions is systematically explored by varying the size of particles (1 ≤ dp (μm) ≤ 30), Reynolds numbers (5000 ≤ Re ≤ 10,000), and other parameters like wave frequency (3 ≤ f ≤ 7), wave amplitude (5 ≤ a (mm) ≤ 15), and diameter of the pipe (10 ≤ D (mm) ≤ 30). The findings reveal significant correlations between these parameters and deposition efficiency, shedding light on the complex interplay between geometric factors and flow characteristics within the wavy pipe configurations. Notably, larger pipe diameters and higher wave amplitudes are found to enhance deposition rates, while the optimal wave frequencies exist at intermediate values. Additionally, alterations in flow velocity exhibit an inverse relationship with deposition efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.