Abstract

AbstractNanocomposite coatings such as (Ti, Al, Si)N have been demonstrated as promising candidates for the use as protection against solid particle erosion for compressor blades. Typically, nanocomposite (Ti, Al, Si)N coatings are deposited by different physical vapor deposition (PVD) techniques. However, the relatively low coating thickness up to a few micrometers due to low deposition rates leads to a limited lifetime of the coatings under erosive particle bombardment. In this study, the deposition of a nanocomposite (Ti, Al, Si)N coating was performed by a hollow cathode gas flow sputtering method, the high‐speed physical vapor deposition, which enables the high‐rate deposition of thick coatings. Morphology and microstructure of the coating were investigated via scanning electron microscopy and transmission electron microscopy, respectively. Tribological characterization by impact tests and erosion tests demonstrates that the nanocomposite (Ti, Al, Si)N coated sample reveals a promising resistance against impact loads and the solid particle erosion. Summarily, nanocomposite (Ti, Al, Si)N coatings deposited by the high‐speed physical vapor deposition provide a high potential for the erosion protection of compressor blades.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.