Abstract
Biological warfare incidents generate both immediate and delayed hazards, potentially resulting from reaerosolization of deposited hazardous particles from surfaces. Understanding the causes and effects of the initial deposition method and environmental conditions on reaerosolization is important in hazard prediction and selection of mitigation approaches. This study was conducted to determine the amount of reaerosolization of various bacterial spores and 1 µm polystyrene latex microspheres deposited wet or dry and incubated at 20 or 80% relative humidity (RH). The organisms used in this study were Bacillus atrophaeus var. globigii (Bg), B. thuringiensis (Bt), B. anthracis ΔSterne (Ba-ΔSterne), Ba-ΔSterne ΔbclA mutant (BclA), and Ba-ΔSterne ΔcotE mutant (CotE). These organisms represent a range of spore types with different outer surfaces: spores with exosporium hairs and a basal layer (Ba-ΔSterne and Bt), spores with a basal layer (BclA), and spores with a spore coat only (no exosporium, Bg and CotE). A pulsed air impinging jet was used to reaerosolize particles from gridded glass surfaces. The amount of reaerosolization was determined by counting the number of particles on the gridded surface before and after applying the air jet. Results indicate that, in general, higher reaerosolization was observed when particles were deposited dry and incubated at lower RH conditions. Our results indicate that Bt (has exosporium) was reaerosolized more readily than Bg (no exosporium) in all cases studied. This method can be used in laboratory studies to compare bacterial spore behavior and to study the relative effects of different spore outer layers and surface types on reaerosolization.© 2017 Leidos, Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.