Abstract

This work deals with the deposited cadmium sulfide (CdS) quantum dots thin films on transparent conductive fluorine-doped tin oxide (FTO) substrates prepared by successive ionic layer adsorption and reaction technique (SILAR). QD deposition based on SILAR is easy, cheap and effective method which improves the surface quality and performance of QD-based devices. The effect of the number of cycles of SILAR on the morphology and size of the quantum dots has been investigated. SILAR technique was adopted for the deposition of CdS on anatase TiO2 and the three main factors contributing to the performance of QDs processed by SILAR, namely the number of cycles used, the concentration of the precursor solution, and the reaction dipping time, are discussed. The structural, morphological and optical properties were studied using X-ray diffraction (XRD), Field emission scanning electron microscope (FESEM), Raman spectra analysis and UV-Vis NIR analysis, respectively. The particle size of CdS was calculated from XRD pattern using Debye Scherrer’s equation and the calculated particle size was 4.5-9.5 nm. Using CdSQDs, quantum dot sensitized solar cells (QDSSC) were fabricated on FTO substrates as being a transparent conductive oxide. Optical absorption property proved that the band gap energy value was about 2.44 eV. The result delivered from J-V curve revealed that the overall energy conversion efficiency increased with increasing the deposition cycles giving the best efficiency of 2.73 % at 7 cycles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call