Abstract

Following DNA replication, equal amounts of chromatin proteins are distributed over sister chromatids by re-deposition of parental chromatin proteins and deposition of newly synthesized chromatin proteins. Molecular mechanisms balancing the allocation of new and old chromatin proteins remain largely unknown. Here, we studied the genome-wide distribution of new chromatin proteins relative to parental DNA template strands and replication initiation zones using the double-click-seq. Under control conditions, new chromatin proteins were preferentially found on DNA replicated by the lagging strand machinery. Strikingly, replication stress induced by hydroxyurea or curaxin treatment and inhibition of ataxia telangiectasia and Rad3-related protein (ATR) or p53 inactivation inverted the observed chromatin protein deposition bias to the strand replicated by the leading strand polymerase in line with previously reported effects on replication protein A occupancy. We propose that asymmetric deposition of newly synthesized chromatin proteins onto sister chromatids reflects differences in the processivity of leading and lagging strand synthesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.