Abstract

Diamond-like carbon (DLC) is a metastable amorphous material that exhibits unique properties. However, there are many limitations regarding the use of this material due to factors such as its tribological characteristics at high temperature and limited thermal stability. In this study, the thermal stability and tribological properties of DLC/silicon-nitrogen (DLC/Si-N) composite films were investigated and compared to those of pure DLC films. All the films were synthesized using a combination of radio frequency (RF) magnetron sputtering and plasma-based ion implantation (PBII) (a so-called sputtering-PBII hybrid system) which is newly developed by us. A high purity silicon nitride (99.9%) disk was used as the target, applying an RF power in the range of 500 - 700 W and a negative pulsed bias voltage of 5 kV to the substrate. An Ar-CH4 mixture was used as the reactive gas. The CH4 partial pressure was varied between 0 and 0.15 Pa, while the total gas pressure and total gas flow were fixed at 0.30 Pa and 30 sccm, respectively. The structures of the resulting films were characterized using Raman spectroscopy, while the thermal stabilities were assessed using thermogravimetric-differential thermal analysis (TG-DTA) and friction coefficients were obtained via ball-on-disk friction tests. The results indicate that the DLC/Si-N composite films produced in this work exhibit improved thermal stability relative to that of pure DLC owing to the presence of thermally stable atomic-scale Si-N compound in the carbon main flame networks. A DLC/Si-N film containing approximately 11 at.%Si and 18.5 at.%N shows good thermal stability in air over 800°C up to 1100°C, together with excellent tribological performance at 500°C in air. Overall, the data demonstrate that DLC/Si-N composite films offer improved thermal stability and superior tribological performance at high temperatures.

Highlights

  • There have been many attempts to develop hard, heat-resistant, low friction thin films that can be used at high temperatures and under high loads

  • The results indicate that the Diamond-like carbon (DLC)/Si-N composite films produced in this work exhibit improved thermal stability relative to that of pure DLC owing to the presence of thermally stable atomic-scale Si-N compound in the carbon main flame networks

  • thermogravimetric-differential thermal analysis (TG-DTA) data showed that the heat resistance of the DLC/Si-N composite films was superior to that of a pure DLC film

Read more

Summary

Introduction

There have been many attempts to develop hard, heat-resistant, low friction thin films that can be used at high temperatures and under high loads. The incorporation of silicon into DLC has overcome some of the stated drawbacks, including significantly reduced residual stress, while retaining the hardness, improving the thermal stability and delivering a low friction coefficient that is highly insensitive to changes in humidity [12] [13] [14]. When both silicon and oxygen are incorporated into DLC films, significant structural modifications occur. A sputtering-plasma based ion implantation (PBII) hybrid process developed in our laboratory [26] was employed in conjunction with Si3N4 to prepare DLC/Si-N composite films, and the heat resistance and other properties of these films were assessed

Experimental
Results and Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call