Abstract

Semiconducting carbon nanotubes (CNTs) were dispersed ultrasonically in the Nmethyl-2-pyrrolidone (NMP) solvent, and were aligned and patterned with the alternating electric field-directed dielectrophoresis (DEP) method. CNT transistors were fabricated with the DEP-patterned semiconducting CNTs. Clean room-based micro- and nanofabrication techniques such as UV lithography and lift-off process were used to fabricate the CNT devices. The patterned semiconducting carbon nanotubes and fabricated transistors were imaged using the scanning electron microscope (SEM), and the current-voltage (IV) curves were obtained. It was found that the gap between the opposite electrodes affected the patterning of CNTs in the DEP process; the CNT transistors had excellent current-voltage (IV) curves of p-channel filedeffect transistors with high ratios of on/off source-drain current values, and the semiconducting CNTs could achieve a higher yield in the device fabrication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.