Abstract

In order to improve the ablation properties of C/C composites, HfC-based coatings with different mass ratios of SiC were deposited on the surface of SiC-coated carbon/carbon composites by supersonic atmospheric plasma spraying. The morphologies and microstructures of the HfC-based coatings were characterised. The ablation resistance test was carried out by oxyacetylene torch. The results show that the as-prepared coatings are multiphase coatings consisting of HfC, HfO2, SiC and SiO2. The structure of different coatings is dense. After ablation for 60 s, the ablation centre region of coating is smooth without obvious microcrack and pinhole, and no interlaminar crack can be observed at the cross-section. An Hf–Si–O compound oxide layer is generated on the surface of coating, which is beneficial for protecting the C/C composites from being ablated. Meanwhile, the further generated HfSiO4 can play a pinning effect, which can prevent crack extension.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.