Abstract

Depolymerization of hyaluronic acid obtained from Streptococcus zooepidemicus by D-fructose 6-phosphate was investigated for characterization of reducing sugar-mediated degradation of biopolymers under physiological conditions. The extent of depolymerization was monitored by the decrease of viscosity of a reaction mixture containing 1.0% hyaluronic acid, D-fructose 6-phosphate, and 1.0 × 10−2 mM of Cu2+ in phosphate buffer, pH 7.4. It was found that the depolymerization of hyaluronic acid was dependent on the concentration of the reducing sugar and was specifically accelerated by the presence of Cu2+. The reaction was found to be significantly inhibited by catalase, superoxide dismutase (SOD), 1,2-dihy­ droxybenzene 3,5-disulfonic acid (Tiron), and chelating agents such as EDTA and diethylene triamine penta­ acetic acid (DETAPAC), although the inhibition by SOD was low. Almost the same depolymerization rates were observed in hyaluronic acid preparations of different molecular weight (1.1 × 106, 8.8 × 105,...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.