Abstract

To investigate the role of activity-dependent mechanisms in sensory transmitter development, we examined the effect of depolarizing stimuli on tyrosine hydroxylase expression and dopamine synthesis in cells of the fetal rat petrosal ganglion, a model of catecholaminergic sensory neurons. Although dopaminergic traits are normally detectable in only 10-20% of ganglion neurones, exposure to depolarizing concentrations of potassium chloride (40 mM) or veratridine (10 microM) in culture induced tyrosine hydroxylase expression in 100% of petrosal neurons and a 10-fold increase in dopamine content. Tyrosine hydroxylase expression remained elevated in a subset of neurons following return to control conditions, suggesting that chronic depolarization elicits a phenotypic switch in some cells. These data show for the first time that transmitter expression in developing sensory neurons can be regulated by activity-related cues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.