Abstract

Several types of extracellular signals affect the function of peripheral neurons. Depolarizing stimuli cause sudden increases in permeability to various ions leading to propagation of nerve impulses and release of transmitter substances. Neurons also receive external signals via neurotransmitter receptors located on the membrane. Different types of receptors present on sympathetic neurons are believed to modulate stimulation-evoked release of norepinephrine. We have investigated the effects of depolarizing stimuli and neurotransmitters on different signaling pathways in homogeneous cultures of chick sympathetic neurons. Depolarizing stimuli (35 mM KCl; electrical stimulation, 1 Hz for 5 min) and neurotransmitters (acetylcholine and 5-hydroxytrypatmine) enhanced membrane binding of protein kinase C by 2-5-fold. 35 mM KCl increased formation of 1,2-diacylglycerol and hydrolysis of [3H]phosphatidycholine without affecting [3H] phosphoinositide hydrolysis. Neurotransmitters increased [3H]inositol phosphates and 1,2-diacylglycerol without affecting the hydrolysis of [3H]phosphatidylcholine. 5-Hydroxytryptamine and acetylcholine (muscarinic component) did not increase Ca2+ concentration in the Indo-1-loaded neuronal cell body or the growth cone, but 35 mM KCl and electrical stimulation caused a marked increase in Ca2+ concentration in both regions of sympathetic neurons. We believe this to be the first demonstration of these two types of signalling mechanisms co-existing in sympathetic neurons; depolarization activate the phosphatidylcholine pathway and neurotransmitters activate the phosphatidylinositol pathway. The importance of two pathways in controlling neuronal Ca2+ concentration and the release of transmitter is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call