Abstract

Secondary generalized seizure (sGS) is a major source of disability in temporal lobe epilepsy (TLE) with unclear cellular/circuit mechanisms. Here we found that clinical TLE patients with sGS showed reduced volume specifically in the subiculum compared with those without sGS. Further, using optogenetics and extracellular electrophysiological recording in mouse models, we found that photoactivation of subicular GABAergic neurons retarded sGS acquisition by inhibiting the firing of pyramidal neurons. Once sGShad been stably acquired, photoactivation of GABAergic neurons aggravated sGS expression via depolarized GABAergic signaling. Subicular parvalbumin, but not somatostatin subtype GABAergic, neurons were easily depolarized in sGS expression. Finally, photostimulation of subicular pyramidal neurons genetically targeted with proton pump Arch, rather than chloride pump NpHR3.0, alleviated sGS expression. These results demonstrated that depolarized GABAergic signaling in subicular microcircuit mediates sGS in TLE. This may be of therapeutic interest in understanding the pathological neuronal circuitry underlying sGS. VIDEO ABSTRACT.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.