Abstract

Several forms of depolarization-induced plasticity in inhibitory transmission have been reported to occur in cerebellar Purkinje cells (PCs), namely depolarization-induced suppression of inhibition (DSI), depolarization-induced potentiation of inhibition (DPI), and rebound potentiation (RP). Here, we describe another form of synaptic plasticity for gamma-amino butyric acid (GABA)ergic transmission in PCs. Immediately following depolarization trains in a PC, evoked inhibitory postsynaptic currents (eIPSCs) changed their direction from outward to inward currents under a recording condition in which eIPSCs were elicited as an outward current. Subsequently, the eIPSC amplitude remained depressed (depolarization-induced depression of inhibition [DDI]) for more than 20 min under the blockade of cannabinoid and N-methyl-D-aspartic acid (NMDA) receptor-mediated DSI and DPI, respectively. This DDI was completely abolished by intracellular infusion of the fast Ca2+-chelating agent BAPTA and by inhibition of Ca2+/calmodulin-dependent protein kinase II (CaMKII). Furthermore, DDI was strongly suppressed by calcium-activated chloride channel (CaCC) blockers, while an inhibitor of cation-chloride cotransporters (CCCs) partially blocked DDI during the early phase. Exogenous GABA-induced inhibition of spontaneous spike activity was attenuated in ∼50% of the PCs by climbing fiber stimulation-induced depolarization. These results suggest that activation of both CaCCs and CCCs was necessary for alteration of [Cl-]i after activation of CaMKII following elevation of [Ca2+]i in PCs. DDI may provide another mechanism for regulation of inhibitory inputs to PCs within the neuronal networks of the cerebellar cortex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.