Abstract

Depolarization has been shown to alter the biosynthesis of a number of neurotransmitters and neuromodulators. In the rat superior cervical ganglion (SCG), for example, depolarization has been reported to increase catecholamine biosynthesis and to decrease the level of substance P. We have recently found that, although the level of vasoactive intestinal peptide (VIP)-like immunoreactivity (IR) is normally low in the SCG, it increases significantly 48 hr after adult ganglia are deafferented in situ or placed in organ culture. Both manipulations decrease electrical activity of postganglionic neurons. To determine whether the increases in ganglionic VIP-IR could be a consequence of decreased depolarization of sympathetic neurons, the effect of depolarization on the expression of VIP-IR was examined in organ cultures of neonatal and adult SCG. Depolarization with elevated K+ (30 mM) or veratridine (1.5 microM) amplified, rather than blocked, the increases in VIP-IR content seen after 24 hr. Further, it increased the number of detectable VIP-IR neuronal cell bodies and processes. The stimulatory effects of veratridine were prevented by TTX. Since similar changes in expression of VIP-IR were evident in dissociated cell cultures of the SCG, cell-cell interactions requiring intact ganglionic architecture are not necessary for altered peptide expression. Elevating the concentration of Mg2+ blocked the ability of K+ and veratridine to increase VIP-IR in dissociated cell culture, raising the possibility that the effects of depolarization on VIP-IR are mediated by increased Ca2+ entry. The depolarizing conditions that increased VIP-IR also increased substance P-IR. While higher concentrations of veratridine (50 microM) blocked the elevation of both VIP- and substance P-IR induced by explantation, they produced significant neuronal death. Since depolarization with either 30 mM KCl or 1.5 microM veratridine increases expression of VIP-IR in neonatal and adult ganglia, decreased depolarization is unlikely to cause the increases in VIP- and substance P-IR that occur in culture. Furthermore, our data raise the possibility that sympathetic nerve activity in vivo can increase expression of these peptides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.