Abstract

The blue crab T fiber synapse, associated with the stretch receptor of the swimming leg, has a nonspiking presynaptic element that mediates tonic transmission. This synapse was isolated and a voltage clamp circuit was used to control the membrane potential at the release sites. The dependence of transmitter release on extracellular calcium, [Ca]o, was studied over a range of 2.5-40 mM. A power relationship of 2.7 was obtained between excitatory postsynaptic potential (EPSP) rate of rise and [Ca]o. Brief presynaptic depolarizing steps, 5-10 ms, presented at 0.5 Hz activated EPSP's of constant amplitude. Inserting a 300-ms pulse (conditioning pulse) between these test pulses potentiated the subsequent test EPSPs. This depolarization-activated potentiation (DAP) lasted for 10-20 s and decayed with a single exponential time course. The decay time course remained invariant with test pulse frequencies ranging from 0.11 to 1.1 Hz. The magnitude and decay time course of DAP were independent of the test pulse amplitudes. The magnitude of DAP was a function of conditioning pulse amplitudes. Large conditioning pulses activated large potentiations, whereas the decay time constants were not changed. The DAP is a Ca-dependent process. When the amplitude of conditioning pulses approached the Ca equilibrium potential, the magnitude of potentiation decreased. Repeated application of conditioning pulses, at 2-s intervals, did not produce additional potentiation beyond the level activated by the first conditioning pulse. Comparison of the conditioning EPSP waveforms activated repetitively indicated that potentiation lasted transiently, 100 ms, during a prolonged release. Possible mechanisms of the potentiation are discussed in light of these new findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.