Abstract
Mobile robots can be used in many applications, such as carpet cleaning, search and rescue, and exploration. Many studies have been devoted to the control, sensing, and communication of robots. However, the deployment of robots has not been fully addressed. The deployment problem is to determine the number of groups unloaded by a carrier, the number of robots in each group, and the initial locations of those robots. This paper investigates robot deployment for coverage tasks. Both timing and energy constraints are considered; the robots carry limited energy and need to finish the tasks before deadlines. We build power models for mobile robots and calculate the robots' power consumption at different speeds. A speed-management method is proposed to decide the traveling speeds to maximize the traveling distance under both energy and timing constraints. Our method uses rectangle scanlines as the coverage routes, and solves the deployment problem using fewer robots. Finally, we provide an approach to consider areas with random obstacles. Compared with two simple heuristics, our solution uses 36% fewer robots for open areas and 32% fewer robots for areas with obstacles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.