Abstract
Atmospheric aerosols influence global climate by scattering and absorbing sunlight (direct effects) and by changing the microphysical structure, lifetime, and coverage of clouds (indirect effects). While it is widely accepted that aerosol indirect effects act to cool the Earth-atmosphere system by increasing cloud reflectivity and coverage, the magnitudes of the indirect effects are poorly quantified. One key aerosol property for understanding aerosol indirect effects is the ability of aerosol particles to form cloud droplets at atmospheric relevant supersaturations—i.e., cloud condensation nuclei (CCN) activity. For particles consisting of typical atmospheric inorganic compounds, their CCN activity is well understood and can be effectively predicted using Kohler theory based on physicochemical properties of the solute, such as its mass, molar volume, and activity coefficient. However, atmospheric aerosols often consist of hundreds of organic species, which can contribute ~20-90% to the total fine aerosol mass. Depending on their properties, organic species can significantly influence the ability of aerosol particles to act as CCN and form cloud droplets. This project focuses on the CCN activity of secondary organic aerosol compounds formed from key biogenic volatile organic compounds (VOCs) under representative conditions, and the relationship between the hygroscopicity and composition of organic aerosols. The ARM Aerialmore » Facility (AAF) scanning mobility particles sizer (SMPS) was deployed during a ~ 6 week intensive measurement campaign, taking place June 15-July 31 2015 at the Pacific Northwest National Laboratory (PNNL) Environmental Simulation Chamber. The SMPS was operated with a CCN counter. Aerosol particles were first classified by the differential mobility analyzer inside the SMPS; the classified aerosol will then be simultaneously characterized by a condensation particle counter (part of the SMPS) and the CCN counter.« less
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.