Abstract

In an effort to monitor leakage from underground CO(2) storage, a field-deployable analyzer capable of rapidly measuring the CO(2) mixing ratio and δ(13)C values (±0.05 ppm(v) ± 0.2‰, 60 s) was deployed to distinguish between biogenic and fossil CO(2) sources. The analyzer was interfaced with a multiport inlet unit to allow autonomous sampling from multiple locations. The instrument and inlet interface were deployed at the Zero Emissions Research and Technology (ZERT) site (Bozeman, Montana, July 14-22, 2009) during a controlled, subsurface release of CO(2) depleted in (13)C. A biogenic diurnal cycle was observed far from the release, and the associated Keeling plot suggested a CO(2) source (δ(13)C = -27.0 ± 0.5‰) consistent with local C(3) vegetation. Inlets near the leak showed large CO(2) mixing ratios (388/>40 000 ppm(v)) whose predominant source was the release CO(2) (inferred δ(13)C = -58.2 ± 0.7‰). Measurements 3 m from the source showed diurnal CO(2) cycles (382-2400 ppm(v)) influenced by leaked CO(2), possibly due to diel air mixing. Finally, the data from all of the sampling inlets was combined to spatially localize the leak position.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.