Abstract
In this paper, we discuss the deployment and testing of an intelligent real-time isolated intersection traffic control system (IICS), designed to optimize simultaneously signal control and automated vehicle (AV) and connected vehicle (CV) trajectories for low demand condition. The work described here is part of an ongoing larger project (funded by the National Science Foundation and the Florida Department of Transportation, FDOT) to develop, test, and deploy the IICS. The focus of this paper is on the deployment and testing of the algorithm at the Traffic Engineering and Research Laboratory (TERL), FDOT’s closed-course facility. The algorithm (described in more detail elsewhere) optimizes signal control and provides optimal AV and CV trajectories at isolated intersections. The algorithm is designed to handle AV, CV, and conventional vehicles in a mixed traffic and low demand condition. The paper provides an overview of the IICS framework, discusses the development and testing of the necessary software and hardware, and presents the scenarios tested at the TERL. The results from the field test confirm the feasibility of the IICS, and will be used to enhance it for future testing and ultimately for field deployment and in high demand condition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Record: Journal of the Transportation Research Board
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.