Abstract

The motion of a space tether system, consisting of a constellation of two microsatellites and a space station, is investigated. The station moves in a circular undisturbed circular lunar orbit. The process of deployment of tethers to bring the system into a working near-vertical condition is considered. A program for controlling the tether tension force that ensures the deployment of tethers to the required length and stabilizes the system in the vertical position is proposed. A study of the stability of the equilibrium position of a mechanical system is carried out. It is shown that the motion carried out during the deployment of a tethered system according to the program proposed in the work is asymptotically stable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call