Abstract

Due to the flying nature of unmanned aerial vehicles (UAVs), it is very attractive to deploy UAVs as aerial base stations and construct airborne networks to provide service for on-ground users at temporary events (such as disaster relief, military operation, and so on). In the constructing of UAV airborne networks, a challenging problem is how to deploy multiple UAVs for on-demand coverage while at the same time maintaining the connectivity among UAVs. To solve this problem, we propose two algorithms: a centralized deployment algorithm and a distributed motion control algorithm. The first algorithm requires the positions of user equipments (UEs) on the ground and provides the optimal deployment result (i.e., the minimal number of UAVs and their respective positions) after a global computation. This algorithm is applicable to the scenario that requires a minimum number of UAVs to provide desirable service for already known on-ground UEs. Differently, the second algorithm requires no global information or computation, instead, it enables each UAV to autonomously control its motion, find the UEs and converge to on-demand coverage. This distributed algorithm is applicable to the scenario where using a given number of UAVs to cover UEs without UEs’ specific position information. In both algorithms, the connectivity of the UAV network is maintained. Extensive simulations validate our proposed algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.