Abstract
As future intelligent infrastructure will bring together and connect individuals, vehicles and infrastructure through wireless communications, it is critical that robust communication technologies are developed. Mobile wireless sensor networks are self-organising mobile networks where nodes exchange data without the need for an underlying infrastructure. In the road transport domain, schemes which are fully infrastructure-less and those which use a combination of fixed (infrastructure) devices and mobile devices fitted to vehicles and other moving objects are of significant interest to the ITS community as they have the potential to deliver a ‘connected environment’ where individuals, vehicles and infrastructure can co-exist and cooperate, thus delivering more knowledge about the transport environment, the state of the network and who indeed is travelling or wishes to travel. This may offer benefits in terms of real-time management, optimisation of transportation systems, intelligent design and the use of such systems for innovative road charging and possibly carbon trading schemes as well as through the CVHS (Cooperative Vehicle and Highway Systems) for safety and control applications. As the wireless sensor networks technology is still relatively new and very little is known about its real application in the transport domain. Our involvement in the transport-related projects provides us with an opportunity to carry out research and development of wireless sensor network applications in transport systems. This chapter outlines our experience in the ASTRA (ASTRA, 2005), TRACKSS (TRACKSS, 2007) and EMMA (EMMA, 2007) projects and provides an illustration of the important role that the wireless sensor technology can play in future ITS. This chapter also presents encouraging results obtained from the experiments in investigating the feasibility of utilising wireless sensor networks in vehicle and vehicle to infrastructure communication in real ITS applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.