Abstract

Data collected by sensors often have to be remotely delivered through multi-hop wireless paths to data sinks connected to application servers for information processing. The position of these sinks has a huge impact on the quality of the specific Wireless Sensor Network (WSN). Indeed, it may create artificial traffic bottlenecks which affect the energy efficiency and the WSN lifetime. This paper considers a heterogeneous network scenario where wireless sensors deliver data to intermediate gateways geared with a diverse wireless technology and interconnected together and to the sink. An optimization framework based on Integer Linear Programming (ILP) is developed to locate wireless gateways minimizing the overall installation cost and the energy consumption in the WSN, while accounting for multi-hop coverage between sensors and gateways, and connectivity among wireless gateways. A traffic-variable scenario is also considered, where the network can go through high and low traffic operation points, and the topology is optimized accordingly. The proposed ILP formulations are solved to optimality for medium-size instances to analyze the quality of the designed networks, and heuristic algorithms are also proposed to tackle large-scale heterogeneous scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.