Abstract
Security at major locations of economic or political importance is a key concern around the world, particularly given the threat of terrorism. Limited security resources prevent full security coverage at all times, which allows adversaries to observe and exploit patterns in selective patrolling or monitoring, e.g. they can plan an attack avoiding existing patrols. Hence, randomized patrolling or monitoring is important, but randomization must provide distinct weights to different actions based on their complex costs and benefits. To this end, this paper describes a promising transition of the latest in multi-agent algorithms -- in fact, an algorithm that represents a culmination of research presented at AAMAS - into a deployed application. In particular, it describes a software assistant agent called ARMOR (Assistant for Randomized Monitoring over Routes) that casts this patrolling/monitoring problem as a Bayesian Stackelberg game, allowing the agent to appropriately weigh the different actions in randomization, as well as uncertainty over adversary types. ARMOR combines three key features: (i) It uses the fastest known solver for Bayesian Stackelberg games called DOBSS, where the dominant mixed strategies enable randomization; (ii) Its mixed-initiative based interface allows users to occasionally adjust or override the automated schedule based on their local constraints; (iii) It alerts the users if mixed-initiative overrides appear to degrade the overall desired randomization. ARMOR has been successfully deployed since August 2007 at the Los Angeles International Airport (LAX) to randomize checkpoints on the roadways entering the airport and canine patrol routes within the airport terminals. This paper examines the information, design choices, challenges, and evaluation that went into designing ARMOR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.