Abstract

The development of strategies to reduce the load of unwanted bacteria is a fundamental challenge in industrial processing, environmental sciences and medical applications. Here, we report a new method to sequester motile bacteria from a liquid, based on passive, deployable micro-traps that confine bacteria using micro-funnels that open into trapping chambers. Even in low concentrations, micro-traps afford a 70% reduction in the amount of bacteria in a liquid sample, with a potential to reach >90% as shown by modelling improved geometries. This work introduces a new approach to contain the growth of bacteria without chemical means, an advantage of particular importance given the alarming growth of pan-drug-resistant bacteria.

Highlights

  • We conducted experiments with two species of motile bacteria: the peritrichous enteric bacterium Escherichia coli, which represents the classic model for bacterial motility, and the marine pathogen Vibrio coralliilyticus, which possesses a single polar flagellum and swims rapidly with a strategy that significantly differs from E. coli’s

  • In all micro-traps, we detected an accumulation of bacteria, for both E. coli and V. coralliilyticus (Fig. 2c), demonstrating the ability of the micro-traps to trap swimming bacteria

  • Our results demonstrate the potential of deployable micro-traps, which can be fabricated in high-throughput and can considerably reduce the load of bacteria from a liquid suspension within tens of minutes

Read more

Summary

Introduction

We first tested surface-attached micro-traps by imaging (Fig. 2a) the accumulation of bacteria within the traps over time, for four different geometries (single domes, 1-layer boxes, 2-layer boxes and 3-layer boxes; Fig. 2b), all with funnel-shaped apertures. The highest average accumulation (4-fold higher concentration of bacteria within the micro-traps than outside) was observed in the 3-layer micro-traps.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.