Abstract

Quantum depletion from an atomic quasi-one-dimensional Bose-Einstein condensate with a dark soliton is studied in a framework of the Bogoliubov theory. Depletion is dominated by an anomalous mode localized in a notch of the condensate wave function. Depletion in an anomalous mode requires a different treatment than depletion without anomalous modes. In particular, quantum depletion in the Bogoliubov vacuum of the anomalous mode is experimentally irrelevant. A dark soliton is initially prepared in a state with minimal depletion, which is not a stationary state of the Bogoliubov theory. The notch fills up with incoherent atoms depleted from the condensate. For realistic parameters the filling time can be as short as 10 ms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.