Abstract
Background Renal glomeruli are the primary target of injury in diabetic nephropathy (DN), and the glomerular podocyte has a key role in disease progression.Methods To identify potential novel therapeutic targets for DN, we performed high-throughput molecular profiling of G protein-coupled receptors (GPCRs) using human glomeruli.Results We identified an orphan GPCR, Gprc5a, as a highly podocyte-specific gene, the expression of which was significantly downregulated in glomeruli of patients with DN compared with those without DN. Inactivation of Gprc5a in mice resulted in thickening of the glomerular basement membrane and activation of mesangial cells, which are two hallmark features of DN in humans. Compared with wild-type mice, Gprc5a-deficient animals demonstrated increased albuminuria and more severe histologic changes after induction of diabetes with streptozotocin. Mechanistically, Gprc5a modulated TGF-β signaling and activation of the EGF receptor in cultured podocytes.Conclusions Gprc5a has an important role in the pathogenesis of DN, and further study of the podocyte-specific signaling activity of this protein is warranted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.