Abstract

Poly ADP‐ribose polymerase inhibitors (PARPi) have shown promising therapeutic efficacy in triple‐negative breast cancer (TNBC) patients. However, resistance ultimately develops, preventing a curative effect from being attained. Extensive investigations have indicated the diversity in the mechanisms underlying the PARPi sensitivity of breast cancer. In this study, we found that DNA damage binding protein 2 (DDB2), a DNA damage‐recognition factor, could protect TNBC cells from PARPi by regulating DNA double‐strand break repair through the homologous recombination pathway, whereas the depletion of DDB2 sensitizes TNBC cells to PARPi. Furthermore, we found that DDB2 was able to stabilize Rad51 by physical association and disrupting its ubiquitination pathway‐induced proteasomal degradation. These findings highlight an essential role of DDB2 in modulating homologous recombination pathway activity and suggest a promising therapeutic target for TNBC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.