Abstract

An effort to analyze the viscoelasticity effects on transverse transport of neutral solutes between two miscible streams in an electrokinetic T‐sensor is presented. The analysis is based on an approximate analytical solution for the depthwise averaged concentration, assuming a channel of large width to depth ratio for which a one‐dimensional profile is sufficient for describing the velocity field. We show that the solution derived is surprisingly accurate even for very small channel aspect ratios and the maximum error reduces to only about 1% when the aspect ratio is 5. The developed model reveals that the mixing length for a viscoelastic fluid may be by far larger than that for a Newtonian fluid. Moreover, the Taylor dispersion coefficient for electroosmotic flow of viscoelastic fluids, which its determination is a main part of the analysis, is found to be an increasing function of both the elasticity level and the EDL thickness. © 2015 American Institute of Chemical Engineers AIChE J, 61: 4533–4541, 2015

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call