Abstract

Chemoresistance limits cisplatin (DDP)-mediated treatment for gastric cancer (GC). Circular RNA (circRNA) acts an important role in chemoresistance. However, the underlying mechanism of circPDSS1 regulating DDP sensitivity in GC remains unclear. The expression patterns of circPDSS1, miR-515-5p and integrin subunit alpha 11 (ITGA11) were analyzed by qRT-PCR. Protein expression was checked by Western blotting analysis. Cell viability was investigated by 3-(4,5-dimethylthazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cell proliferation was evaluated by colony formation assay and 5-ethynyl-2′-deoxyuridine (EdU) assay. The analysis of cell apoptosis, migration and invasion was performed by flow cytometry analysis and transwell assays. Dual-luciferase reporter assay and RNA immunoprecipitation assay were conducted to identify the associations among circPDSS1, miR-515-5p and ITGA11. In vivo assay was implemented using a xenograft mouse model assay. CircPDSS1 and ITGA11 expression were significantly upregulated, whereas miR-515-5p was downregulated in DDP-resistant GC tissues and cells in comparison with controls. CircPDSS1 depletion reduced DDP resistance, cell proliferation, migration and invasion but induced cell apoptosis in DDP-resistant GC cells. CircPDSS1 directly bound to miR-515-5p. CircPDSS1-mediated actions were dependent on the regulation of miR-515-5p. Besides, miR-515-5p was associated with ITGA11, and circPDSS1 regulated ITGA11 expression by binding to miR-515-5p. Overexpression of miR-515-5p improved DDP sensitivity owing to the downregulation of ITGA11. Further, circPDSS1 mediated DDP sensitivity by regulating miR-515-5p and ITGA11 in vivo. CircPDSS1 conferred DDP resistance through the miR-515-5p/ITGA11 axis in GC cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call