Abstract
The 5-HT1A agonist 8-OH-DPAT has been reported to disrupt prepulse inhibition (PPI) of the acoustic startle reflex after local administration into the raphe nuclei. Because it is likely that 8-OH-DPAT disrupted PPI by activation of somatodendritic inhibitory receptors, and thereby, via a decrease in 5-HT neurotransmission, we tested whether chronic, drug-induced, depletions of 5-HT have similar effects. Rats were drug-treated for three consecutive days and tested in a short PPI paradigm on day 4, and retested 2 h later, after acute saline or drug administration. Repeated treatment with the 5-HT synthesis inhibitor p-chlorophenylalanine methyl ester (PCPA; 160 mg/kg) produced a small, but significant, attenuation of PPI, and a large decrease in extracellular 5-HT levels in the hippocampus, as measured in independent microdialysis experiments. An even larger depletion of 5-HT was obtained by substituting the 3rd PCPA administration with the 5-HT releaser d-fenfluramine (10 mg/kg); this combined treatment nearly abolished PPI in the majority of animals. The involvement of 5-HT in the latter effects was confirmed by the finding that low doses of the 5-HT precursor 5-hydroxy-l-tryptophan reinstated PPI during retest. These data, together with recently published studies, provide strong evidence that pharmacologically-induced depletion of 5-HT disrupts PPI.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.