Abstract

Evaluating various investigations for north-German gas fields, we discuss past and actual evolutions of the rock fabric in the light of dilatant driven and spontaneous contractant critical phenomena. Features of the latter were discovered by multi-stage triaxial tests with water-saturated sandstone samples and were similarly observed around the gas fields. A Mohr–Coulomb condition with quasi-local stress components ({hat{sigma }}'_1 and {hat{sigma }}'_3), and variable parameters phi ’ and {{hat{c}}}', can capture successive critical states of the solid fabric. The implied driven dilatation up to a collapse with contraction is captured by a stress-dilatancy relation. Fractal patterns of shear bands (faults) dominate if the smallest principal stress {hat{sigma }}'_3 exceeds {{hat{c}}}', otherwise cracks dominate and can lead to a rockburst. Triaxial tests with X-ray attenuation, seismometry including the splitting of shear waves and/or neutron beam diffraction contribute to clarification and validation. Seismic early warning and calculation models for various geotechnical operations with dominating faults can thus be improved, but the task is more difficult for rockbursts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call