Abstract

We carry out numerical simulations to study the behavior of an athermal mixture of frictionless circular disks and elongated rods in two dimensions, under three different types of global linear deformation at a finite strain rate: (i) simple shearing, (ii) pure shearing, and (iii) isotropic compression. We find that the fluctuations induced by such deformations lead to depletion forces that cause rods to group in parallel oriented clusters for the cases of simple and pure shear, but not for isotropic compression. For simple shearing, we find that as the fraction of rods increases, this clustering increases, leading to an increase in the average rate of rotation of the rods, and a decrease in the magnitude of their nematic ordering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call