Abstract
Glass transition for atactic poly(methyl methacrylate) (a-PMMA) prepared in nano-cells by microemulsion polymerization was measured at a faster heating rate after slow cooling of the sample from a temperature above Tg. An additional enthalpy relaxation and glass transition were observed at higher temperatures for the a-PMMA sample due to the partial organization of the chain segments which occurred during microemulsion polymerization. The re-precipitated a-PMMA did not show any self-organization under the same thermal conditions, although there are no changes in molecular weight or tacticity of the polymer chains. A depletion-interaction phenomenon was understood to provide entropic force for the self-organization of polymer chains inside the walls of the microemulsion cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.