Abstract

The association between carbon nanotubes (CNTs) and polymers to afford functional composites has been attributed to enthalpic interactions, neglecting the entropic depletion effect, in which bound solvents are released during the association process. Here, we show that association between multiwalled CNTs and common polymers is governed by the depletion effect, generating a corresponding entropic free energy up to ca. 13 kJ mol-1 at room temperature, while the enthalpic contribution is insignificant or even negative. Notably, association between the polymers and the CNTs takes place preferentially at the highly stacked CNT junctions, leading to mechanical reinforcement without impacting conductivity. Consequently, high-performance composite membranes were fabricated from inexpensive multiwalled CNTs and polyacrylonitrile (PAN) and were used as electrode supports for platinum (Pt) nanoparticles, affording specific currents 6-7-fold higher than that of Pt foil in the hydrogen evolution reaction and displaying outstanding stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.