Abstract

We investigate quasi-two-dimensional buckled colloidal monolayers on a triangular lattice with tunable depletion interactions. Without depletion attraction, the experimental system provides a colloidal analog of the well-known geometrically frustrated Ising antiferromagnet [Y. Han et al., Nature 456, 898-903 (2008)]. In this contribution, we show that the added depletion attraction can influence both the magnitude and signof an Ising spin coupling constant. As a result, the nearest-neighbor Ising "spin" interactions can be made to vary from antiferromagnetic to para- and ferromagnetic. Using a simple theory, we compute an effective Ising nearest-neighbor coupling constant, and we show how competition between entropic effects permits for the modification of the coupling constant. We then experimentally demonstrate depletion-induced modification of the coupling constant, including its sign, and other behaviors. Depletion interactions are induced by rod-like surfactant micelles that change length with temperature and thus offer means for tuning the depletion attraction insitu. Buckled colloidal suspensions exhibit a crossover from an Ising antiferromagnetic to paramagnetic phase as a function of increasing depletion attraction. Additional dynamical experiments reveal structural arrest in various regimes of the coupling-constant, driven by different mechanisms. In total, this work introduces novel colloidal matter with "magnetic" features and complex dynamics rarely observed in traditional spin systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.