Abstract

Measurements of the nitrogen isotopic ratio in Solar System comets show a constant value, ≈140, which is three times lower than the protosolar ratio, a highly significant difference that remains unexplained. Observations of static starless cores at early stages of collapse confirm the theoretical expectation that nitrogen fractionation in interstellar conditions is marginal for most species. Yet, observed isotopic ratios in N2H+ are at variance with model predictions. These gaps in our understanding of how the isotopic reservoirs of nitrogen evolve, from interstellar clouds to comets, and, more generally, to protosolar nebulae, may have their origin in missing processes or misconceptions in the chemistry of interstellar nitrogen. So far, theoretical studies of nitrogen fractionation in starless cores have addressed the quasi-static phase of their evolution such that the effect of dynamical collapse on the isotopic ratio is not known. In this paper, we investigate the fractionation of 14N and 15N during the gravitational collapse of a pre-stellar core through gas-phase and grain adsorption and desorption reactions. The initial chemical conditions, which are obtained in steady state after typically a few Myr, show low degrees of fractionation in the gas phase, in agreement with earlier studies. However, during collapse, the differential rate of adsorption of 14N- and 15N-containing species onto grains results in enhanced 15N:14N ratios, in better agreement with the observations. Furthermore, we find differences in the behavior, with increasing density, of the isotopic ratio in different species. We find that the collapse must take place on approximately one free-fall timescale, based on the CO abundance profile in L183. Various chemical effects that bring models into better agreement with observations are considered. Thus, the observed values of 14N2H+:N15NH+ and 14N2H+:15NNH+ could be explained by different temperature dependences of the rates of dissociative recombination of these species. We also study the impact of the isotopic sensitivity of the charge-exchange reaction of N2 with He+ on the fractionation of ammonia and its singly deuterated analog and find significant depletion in the 15N variants. However, these chemical processes require further experimental and theoretical investigations, especially at low temperature. These new findings, such as the depletion-driven fractionation, may also be relevant to the dense, UV-shielded regions of protoplanetary disks.

Highlights

  • Protoplanetary disks provide the material out of which planets and primitive cosmic objects, such as meteorites and comets, form, and establishing their chemical composition has become a key objective

  • In the case of nitrogen, isotopic ratios measured in a variety of solar-system objects present a rather confusing picture, with values ranging from 441 in Jupiter and the proto-Sun, down to approximately 50 in micron-sized inclusions in chondrites (Bonal et al 2010)

  • The current state of affairs is that the origin of nitrogen in the Solar System remains elusive (Hily-Blant et al 2013a; Füri & Marty 2015)

Read more

Summary

Introduction

Protoplanetary disks provide the material out of which planets and primitive cosmic objects, such as meteorites and comets, form, and establishing their chemical composition has become a key objective (van Dishoeck et al 2014; van Dishoeck 2018). Recent years have seen renewed interest in the isotopic ratio of interstellar nitrogen, with a view to establishing the degree to which planetary systems inherit their chemical composition from their parent interstellar clouds (Hily-Blant et al 2013a). In this context, the unprecedented sensitivity of the ALMA interferometer plays an important role, in that it enables the nitrogen isotopic ratios to be measured in circumstellar disks. One of the current challenges is to determine the sources of isotopic ratio variations of nitrogen in star-forming regions and protoplanetary disks

Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.