Abstract

Deep vein thrombosis (DVT) is a common and fatal disease with a pathology involving endothelial dysfunction. The present research aimed to address the potential clinical significance of miR-125a-5p in DVT and its effect on the dysfunction of Human umbilical vein endothelial cells (HUVECs). Serum miR-125a-5p levels were measured using RT-qPCR in 88 patients with DVT and 76 healthy controls. ROC was plotted to evaluate the diagnostic potential of miR-125a-5p. Spearman's correlation coefficient was performed to calculate the correlation between miR-125a-5p and clinical indicators. CCK-8, Transwell, and ELISA were employed to verify the effects of cell proliferation, migration, and inflammatory and adhesion molecules. Dual-luciferase reporter assay to analyze potential target for miR-125a-5p. Serum miR-125a-5p was reduced in patients with DVT compared with healthy controls (P < 0.001). ROC showed that miR-125a-5p significantly identified patients with DVT from the healthy controls (AUC = 0.834). Furthermore, serum miR-125a-5p was negatively correlated with inflammatory factors and coagulation factors. In in vitro studies, proliferation and migration of HUVECs were inhibited by suppressed miR-125a-5p, whereas inflammation and adhesion factors were considerably promoted (P < 0.05). Moreover, miR-125-5p directly targeted the 3'UTR of angiopoietin 2 (ANGPT2) and was negatively regulated. Finally, serum ANGPT2 was elevated in patients with DVT and was negatively correlated with serum miR-125a-5p. The current research demonstrated that decreased miR-125a-5p was a novel potential diagnostic biomarker for DVT and that it may be involved in DVT progression by targeting ANGPT2 to regulate endothelial dysfunction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call