Abstract

Aim: To explore adequate parameters for EMD of ABP signal; to determine the intrinsic characteristics of ABP waveform through the analysis of IMFs’ averaged period and its energy density; to examine the effect of different respiration patterns on IMFs extracted from ABP waveform by CEEMD. Arterial blood pressure (ABP) reflects cardiac function, vessel compliance, and cardiorespiratory interaction and ABP analysis provides the estimators of this physiological information. But it is inconvenient for quantitative ABP assessment due to several influences, such as respiration. Recently, a novel adaptive method, called empirical mode decomposition (EMD), was proposed, and it was useful for non-stationary intrinsic characteristics extraction. Though some literatures examined that EMD helps for physiological signal analysis study, the method applied for ABP signal still needs further investigation. This study proposed a standard procedure of specific EMD for ABP intrinsic characterization during spontaneous breathing, 6-cycle breathing, and hyperventilation. The extracted components, called intrinsic mode functions (IMFs), were determined with the examined parameters, including ensemble number, added noise, and the stop criterion. The IMFs of ABP signal were categorized into five major intrinsic components, including the noise and irregular fluctuation (IMF1), beat-to-beat cardiac intervals (IMF2), characteristics of pressure waveform morphology (IMF3), base beat (IMF4), and respiratory related fluctuation (IMF5 and IMF6). The results showd that the characteristics of IMFs were quantified by averaged period and corresponding energy density with good reproducibility. The proposed algorithm produced meaningful IMFs representing the cardiac rhythm, intrinsic waveform mophology, and the intrinsic influence of respiration fluctuations. EMD helps for analyzing the underlying mechanisms of control processes, including cardiorespiratory coupling and interactions among organ systems at multiple time scales.

Highlights

  • Arterial blood pressure (ABP) is one of the most important parameters of systemic circulation

  • One-fifteenth of standard deviation of source signal as the standard deviation of noise was selected as the setting of added white noise for ABP signal decomposition in complementary EEMD (CEEMD) in this study

  • By the adequate parameters setting of CEEMD, the non-physiological artifacts and noises were restricted within IMF1

Read more

Summary

Introduction

Arterial blood pressure (ABP) is one of the most important parameters of systemic circulation. Analysis of morphologic indices of ABP waveform, such as systolic peaks, diastolic valleys, dicrotic notches, and augmented index, have been used to evaluate the activities of autonomic nerve system [4,5], arterial stiffness [2,3], cardiac function [6] and detection of cardiac arrhythmia [7]. Most of these algorithms are only suitable for certain physiological states [8,9]

Objectives
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.