Abstract

The physical interaction of the human growth factor receptor-bound protein 14 (hGrb14) and the insulin receptor (IR) represses insulin signaling. With respect to the recruiting mechanism of hGrb14 to IR respond to insulin stimulus, our previous reports have suggested that phosphorylation of Ser358 , Ser362 , and Ser366 in hGrb14 by glycogen synthase kinase-3 repressed hGrb14-IR complex formation. In this study, we investigated phosphatase-mediated dephosphorylation of the hGrb14 phosphoserine residues. An in vitro phosphatase assay with hGrb14-derived synthetic phosphopeptides suggested that protein phosphatase 1 (PP1) is involved in the dephosphorylation of Ser358 and Ser362 . Furthermore, coimmunoprecipitation experiments suggested that insulin-induced hGrb14-IR complex formation was repressed by the substitution of Ser358 or Ser362 with glutamic acid. These findings suggested that phosphate groups on Ser358 and Ser362 in hGrb14 are dephosphorylated by PP1, and the dephosphorylation facilitates hGrb14-IR complex formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call