Abstract

AbstractThe double-slag converter steelmaking process can smelt low- and ultra-low-phosphorus steel and reduce lime and dolomite consumption and the amount of final slag simultaneously. Industrial steelmaking tests on a 150-metric ton converter at the Tangsteel Company were carried out to study this principle and its effect on the dephosphorization ratio and material consumption. The results showed that low-temperature stage could be used with a reduced amount of slag in the double-slag steelmaking process to achieve rapid and efficient dephosphorization. A low-basicity slag (~1.5–2.0) in the dephosphorization stage is required in double-slag process. The dephosphorization ratio reached a maximum of 71 % when the slag basicity was 1.7. The end-point phosphorus content after the smelting process was reduced from an average of 0.018 mass% to an average of 0.011 mass% and the dephosphorization efficiency increased by more than 6 %. The dephosphorization slag could be poured out rapidly when the FeO content was controlled at ~16–20 mass% in the double-slag smelting process. Based on key factors such as an efficient dephosphorization and a rapid iron–slag separation, the production efficiency was improved and the smelting cycle increased by only four minutes over the conventional process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.