Abstract

Due to the dependent scattering and absorption effects, the radiative transfer equation (RTE) may not be suitable for dealing with radiative transfer in dense discrete random media. This paper continues previous research on multiple and dependent scattering in densely packed discrete particle systems, and puts emphasis on the effects of particle complex refractive index. The Mueller matrix elements of the scattering system with different complex refractive indexes are obtained by both electromagnetic method and radiative transfer method. The Maxwell equations are directly solved based on the superposition T-matrix method, while the RTE is solved by the Monte Carlo method combined with the hard sphere model in the Percus-Yevick approximation (HSPYA) to consider the dependent scattering effects. The results show that for densely packed discrete random media composed of medium size parameter particles (equals 6.964 in this study), the demarcation line between independent and dependent scattering has remarkable connections with the particle complex refractive index. With the particle volume fraction increase to a certain value, densely packed discrete particles with higher refractive index contrasts between the particles and host medium and higher particle absorption indexes are more likely to show stronger dependent characteristics. Due to the failure of the extended Rayleigh-Debye scattering condition, the HSPYA has weak effect on the dependent scattering correction at large phase shift parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.