Abstract

Recent approaches to compression of deep neural networks, like the emerging standard on compression of neural networks for multimedia content description and analysis (MPEG-7 part 17), apply scalar quantization and entropy coding of the quantization indexes. In this paper we present an advanced method for quantization of neural network parameters, which applies dependent scalar quantization (DQ) or trellis-coded quantization (TCQ), and an improved context modeling for the entropy coding of the quantization indexes. We show that the proposed method achieves 5.778% bitrate reduction and virtually no loss (0.37%) of network performance in average, compared to the baseline methods of the second test model (NCTM) of MPEG-7 part 17 for relevant working points.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.