Abstract

AbstractWe show that Dependent Choice is a sufficient choice principle for developing the basic theory of proper forcing, and for deriving generic absoluteness for the Chang model in the presence of large cardinals, even with respect to $\mathsf {DC}$ -preserving symmetric submodels of forcing extensions. Hence, $\mathsf {ZF}+\mathsf {DC}$ not only provides the right framework for developing classical analysis, but is also the right base theory over which to safeguard truth in analysis from the independence phenomenon in the presence of large cardinals. We also investigate some basic consequences of the Proper Forcing Axiom in $\mathsf {ZF}$ , and formulate a natural question about the generic absoluteness of the Proper Forcing Axiom in $\mathsf {ZF}+\mathsf {DC}$ and $\mathsf {ZFC}$ . Our results confirm $\mathsf {ZF} + \mathsf {DC}$ as a natural foundation for a significant portion of “classical mathematics” and provide support to the idea of this theory being also a natural foundation for a large part of set theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.