Abstract
This paper describes and analyzes an estimation of distribution algorithm based on dependency tree models (dtEDA), which can explicitly encode probabilistic models for permutations. dtEDA is tested on deceptive ordering problems and a number of instances of the quadratic assignment problem. The performance of dtEDA is compared to that of the standard genetic algorithm with the partially matched crossover (PMX) and the linear order crossover (LOX). In the quadratic assignment problem, the robust tabu search is also included in the comparison.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.