Abstract

We focus on the problem of efficient learning of dependency trees. Once grown, they can be used as a special case of a Bayesian network, for PDF approximation, and for many other uses. Given the data, a well-known algorithm can fit an optimal tree in time that is quadratic in the number of attributes and linear in the number of records. We show how to modify it to exploit partial knowledge about edge weights. Experimental results show running time that is near-constant in the number of records, without significant loss in accuracy of the generated trees.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.