Abstract
In this paper, we propose a new language model, namely, a dependency structure language model, for topic detection and tracking (TDT) to compensate for weakness of unigram and bigram language models. The dependency structure language model is based on the Chow expansion theory and the dependency parse tree generated by a linguistic parser. So, long-distance dependencies can be naturally captured by the dependency structure language model. We carried out extensive experiments to verify the proposed model on topic tracking and link detection in TDT. In both cases, the dependency structure language models perform better than strong baseline approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.